CEL-SCI Corporation (NYSE MKT: CVM) announced that its longstanding collaboration with Northeast Ohio Medical University has produced a new investigational breast cancer vaccine which prevents and treats a HER-2/neu expressing breast cancer tumor in a mouse model of the disease. In animal tests this vaccine has shown 1) reduction of number of tumors, 2) reduction of tumor mass, 3) absence of tumor in lymph nodes or peritoneal membranes and 4) changes in angiogenesis. Kenneth S. Rosenthal, Ph.D. of Northeast Ohio Medical University presented these findings in detail at the GTCBIO Immune Responses in the Tumor Microenvironment Workshop, January 30, 2013 to February 1, 2013 in San Diego, CA.

Dr. Rosenthal, Sarah Stone and Robin Edmonds from Northeast Ohio Medical University in collaboration with Dr. Daniel H. Zimmerman, CEL-SCI Corporation’s Senior Vice President of Research, Cellular Immunolgy, designed and tested the L.E.A.P.S. (Ligand Epitope Antigen Presentation System) technology vaccine. J-HER chemically links the J-ICBL (immune cell binding ligand) peptide to a minimal antigenic peptide (epitope) from the HER-2/neu protein, a protein present in most human breast tumor cells. This protein is the target for different types of immunotherapy with sales of many billions of dollars. Blocking this receptor protein with an antibody causes the tumor cells to commit suicide (apoptosis). The L.E.A.P.S vaccine activates a T lymphocyte response targeted to this protein that promotes killing and control of the tumor cell. In these studies, mice were immunized with the J-HER vaccine before, or one week after implantation of HER-2/neu breast cancer cells. In both cases the immune response initiated by the immunization significantly blocked further development and progression of tumors in most of the animals. Another J-LEAPS vaccine produced similar anti-tumor results in a mouse model for a different cancer by another researcher working with Dr. Rosenthal.

L.E.A.P.S. is a novel peptide platform technology that enables CEL-SCI to design and synthesize proprietary immunogens. Any disease for which an antigenic sequence has been identified, including infectious, parasitic, malignant or autoimmune diseases and allergies, are potential therapeutic targets for the application of L.E.A.P.S. technology. In addition to the J-HER vaccine, L.E.A.P.S. vaccines have been developed to prevent or treat herpes simplex virus, HIV, influenza and rheumatoid arthritis.

The concept behind the L.E.A.P.S. technology is to mimic cell-cell interactions that activate immune cells with synthetic peptides. Depending upon the type of L.E.A.P.S. construct and ICBL used, CEL-SCI is able to direct the outcome of the immune response. The J-ICBL stimulates the only cell that can initiate an immune response, the dendritic cell. J-LEAPS vaccines activate dendritic cells from humans as well as mice. The activated dendritic cells direct T-cells to deliver the appropriate protective or therapeutic response. For J-HER, this response would activate tumor specific T killer cells. A mixture containing J-HER and similar J-LEAPS vaccines can readily be synthesized and used to treat breast cancers in humans.

About CEL-SCI Corporation

CEL-SCI is dedicated to research and development directed at improving the treatment of cancer and other diseases by utilizing the immune system, the body's natural defense system. Its lead investigational therapy is Multikine (Leukocyte Interleukin, Injection), currently being studied in a pivotal global Phase III clinical trial. CEL-SCI is also investigating an immunotherapy (LEAPS-H1N1-DC) as a possible treatment for H1N1 hospitalized patients and as a vaccine (CEL-2000) for Rheumatoid Arthritis (currently in preclinical testing) using its LEAPS technology platform. The investigational immunotherapy LEAPS-H1N1-DC treatment involves non-changing regions of H1N1 Pandemic Flu, Avian Flu (H5N1), and the Spanish Flu, as CEL-SCI scientists are very concerned about the possible emergence of a new more virulent hybrid virus through the combination of H1N1 and Avian Flu, or maybe Spanish Flu. The Company has operations in Vienna, Virginia, and in/near Baltimore, Maryland.

For more information, please visit www.cel-sci.com.

When used in this report, the words "intends," "believes," "anticipated", “plans” and "expects" and similar expressions are intended to identify forward-looking statements. Such statements are subject to risks and uncertainties which could cause actual results to differ materially from those projected. Factors that could cause or contribute to such differences include, an inability to duplicate the clinical results demonstrated in clinical studies, timely development of any potential products that can be shown to be safe and effective, receiving necessary regulatory approvals, difficulties in manufacturing any of the Company's potential products, inability to raise the necessary capital and the risk factors set forth from time to time in CEL-SCI Corporation's SEC filings, including but not limited to its report on Form 10-K for the year ended September 30, 2012. The Company undertakes no obligation to publicly release the result of any revision to these forward-looking statements which may be made to reflect the events or circumstances after the date hereof or to reflect the occurrence of unanticipated events.


Contacts

CEL-SCI Corporation
Gavin de Windt, 703-506-9460